Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
PLoS Pathog ; 20(3): e1012060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442126

RESUMO

The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Camundongos , Animais , Humanos , Roedores , Vírus da Hepatite B/genética , Serpentes , Replicação Viral , RNA Viral/genética
2.
Nat Commun ; 15(1): 2476, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509088

RESUMO

Cellular entry of the hepatitis B and D viruses (HBV/HDV) requires binding of the viral surface polypeptide preS1 to the hepatobiliary transporter Na+-taurocholate co-transporting polypeptide (NTCP). This interaction can be blocked by bulevirtide (BLV, formerly Myrcludex B), a preS1 derivative and approved drug for treating HDV infection. Here, to elucidate the basis of this inhibitory function, we determined a cryo-EM structure of BLV-bound human NTCP. BLV forms two domains, a plug lodged in the bile salt transport tunnel of NTCP and a string that covers the receptor's extracellular surface. The N-terminally attached myristoyl group of BLV interacts with the lipid-exposed surface of NTCP. Our structure reveals how BLV inhibits bile salt transport, rationalizes NTCP mutations that decrease the risk of HBV/HDV infection, and provides a basis for understanding the host specificity of HBV/HDV. Our results provide opportunities for structure-guided development of inhibitors that target HBV/HDV docking to NTCP.


Assuntos
Hepatite B , Lipopeptídeos , Simportadores , Humanos , Vírus da Hepatite B/fisiologia , Antivirais/uso terapêutico , Receptores Virais/metabolismo , Ácidos e Sais Biliares/metabolismo , Vírus Delta da Hepatite/fisiologia , Simportadores/metabolismo , Internalização do Vírus , Hepatócitos/metabolismo
3.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421275

RESUMO

Kolmioviridae is a family for negative-sense RNA viruses with circular, viroid-like genomes of about 1.5-1.7 kb that are maintained in mammals, amphibians, birds, fish, insects and reptiles. Deltaviruses, for instance, can cause severe hepatitis in humans. Kolmiovirids encode delta antigen (DAg) and replicate using host-cell DNA-directed RNA polymerase II and ribozymes encoded in their genome and antigenome. They require evolutionary unrelated helper viruses to provide envelopes and incorporate helper virus proteins for infectious particle formation. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Kolmioviridae, which is available at ictv.global/report/kolmioviridae.


Assuntos
Vírus Auxiliares , Viroides , Animais , Humanos , Evolução Biológica , Vírus de RNA de Sentido Negativo , RNA Polimerase II , Mamíferos
4.
Viruses ; 15(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37112819

RESUMO

Chronic hepatitis B virus (HBV) infection is a global health threat. Mutations in the surface antigen of HBV (HBsAg) may alter its antigenicity, infectivity, and transmissibility. A patient positive for HBV DNA and detectable but low-level HBsAg in parallel with anti-HBs suggested the presence of immune and/or diagnostic escape variants. To support this hypothesis, serum-derived HBs gene sequences were amplified and cloned for sequencing, which revealed infection with exclusively non-wildtype HBV subgenotype (sgt) D3. Three distinct mutations in the antigenic loop of HBsAg that caused additional N-glycosylation were found in the variant sequences, including a previously undescribed six-nucleotide insertion. Cellular and secreted HBsAg was analyzed for N-glycosylation in Western blot after expression in human hepatoma cells. Secreted HBsAg was also subjected to four widely used, state-of-the-art diagnostic assays, which all failed to detect the hyperglycosylated insertion variant. Additionally, the recognition of mutant HBsAg by vaccine- and natural infection-induced anti-HBs antibodies was severely impaired. Taken together, these data suggest that the novel six-nucleotide insertion as well as two other previously described mutations causing hyperglycosylation in combination with immune escape mutations have a critical impact on in vitro diagnostics and likely increase the risk of breakthrough infection by evasion of vaccine-induced immunity.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Anticorpos Anti-Hepatite B , Vacinas contra Hepatite B , Mutação , Fatores Imunológicos , Nucleotídeos , Proteínas de Membrana/genética
5.
JHEP Rep ; 5(4): 100673, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36908749

RESUMO

Background & Aims: Pegylated interferon alpha (pegIFNα) is commonly used for the treatment of people infected with HDV. However, its mode of action in HDV-infected cells remains elusive and only a minority of people respond to pegIFNα therapy. Herein, we aimed to assess the responsiveness of three different cloned HDV strains to pegIFNα. We used a previously cloned HDV genotype 1 strain (dubbed HDV-1a) that appeared insensitive to interferon-α in vitro, a new HDV strain (HDV-1p) we isolated from an individual achieving later sustained response to IFNα therapy, and one phylogenetically distant genotype 3 strain (HDV-3). Methods: PegIFNα was administered to human liver chimeric mice infected with HBV and the different HDV strains or to HBV/HDV infected human hepatocytes isolated from chimeric mice. Virological parameters and host responses were analysed by qPCR, sequencing, immunoblotting, RNA in situ hybridisation and immunofluorescence staining. Results: PegIFNα treatment efficiently reduced HDV RNA viraemia (∼2-log) and intrahepatic HDV markers both in mice infected with HBV/HDV-1p and HBV/HDV-3. In contrast, HDV parameters remained unaffected by pegIFNα treatment both in mice (up to 9 weeks) and in isolated cells infected with HBV/HDV-1a. Notably, HBV viraemia was efficiently lowered (∼2-log) and human interferon-stimulated genes similarly induced in all three HBV/HDV-infected mouse groups receiving pegIFNα. Genome sequencing revealed highly conserved ribozyme and L-hepatitis D antigen post-translational modification sites among all three isolates. Conclusions: Our comparative study indicates the ability of pegIFNα to lower HDV loads in stably infected human hepatocytes in vivo and the existence of complex virus-specific determinants of IFNα responsiveness. Impact and implications: Understanding factors counteracting HDV infections is paramount to develop curative therapies. We compared the responsiveness of three different cloned HDV strains to pegylated interferon alpha in chronically infected mice. The different responsiveness of these HDV isolates to treatment highlights a previously underestimated heterogeneity among HDV strains.

6.
BMC Infect Dis ; 22(1): 848, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376846

RESUMO

BACKGROUND: Hepatitis C virus (HCV) is a global public health problem, with ~ 11 million people in Africa infected. There is incomplete information on HCV in Sudan, particularly in haemodialysis patients, who have a higher prevalence compared to the general population. Thus, our objectives were to genotype and molecularly characterize HCV isolated from end-stage renal disease haemodialysis patients. METHODS: A total of 541 patients were recruited from eight haemodialysis centres in Khartoum and screened for anti-HCV. Viral loads were determined using in-house real-time PCR in seropositive patients. HCV was genotyped and subtyped using sequencing of amplicons of 5' untranslated (UTR) and non-structural protein 5B (NS5B) regions, followed by phylogenetic analysis of corresponding sequences. RESULTS: The HCV seroprevalence in the study was 17% (93/541), with HCV RNA-positive viremic rate of 7% (40/541). A low HCV load, with a mean of 2.85 × 104 IU/ml and a range of 2.95 × 103 to 4.78 × 106 IU/ml, was detected. Phylogenetic analyses showed the presence of genotypes 1, 3, 4, and 5 with subtypes 1a, 1b, 1 g, 3a, 4a, 4 l, 4 m, 4 s, and 4t. Sequences of HCV from the same haemodialysis units, clustered in similar genotypes and subtypes intimating nosocomial infection. CONCLUSION: HCV infection is highly prevalent in haemodialysis patients from Sudan, with phylogenetic analysis intimating nosocomial infection. HCV genotyping is useful to locate potential transmission chains and to enable individualized treatment using highly effective direct-acting antivirals (DAAs).


Assuntos
Infecção Hospitalar , Hepatite C Crônica , Hepatite C , Falência Renal Crônica , Humanos , Hepacivirus/genética , Genótipo , Antivirais , Estudos Soroepidemiológicos , Filogenia , Diálise Renal , Falência Renal Crônica/terapia , Infecção Hospitalar/epidemiologia , Sudão/epidemiologia
7.
Nat Rev Gastroenterol Hepatol ; 19(11): 727-745, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35859026

RESUMO

Globally, 296 million people are infected with hepatitis B virus (HBV), and approximately one million people die annually from HBV-related causes, including liver cancer. Although there is a preventative vaccine and antiviral therapies suppressing HBV replication, there is no cure. Intensive efforts are under way to develop curative HBV therapies. Currently, only a few biomarkers are available for monitoring or predicting HBV disease progression and treatment response. As new therapies become available, new biomarkers to monitor viral and host responses are urgently needed. In October 2020, the International Coalition to Eliminate Hepatitis B Virus (ICE-HBV) held a virtual and interactive workshop on HBV biomarkers endorsed by the International HBV Meeting. Various stakeholders from academia, clinical practice and the pharmaceutical industry, with complementary expertise, presented and participated in panel discussions. The clinical utility of both classic and emerging viral and immunological serum biomarkers with respect to the course of infection, disease progression, and response to current and emerging treatments was appraised. The latest advances were discussed, and knowledge gaps in understanding and interpretation of HBV biomarkers were identified. This Roadmap summarizes the strengths, weaknesses, opportunities and challenges of HBV biomarkers.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/tratamento farmacológico , Antivirais/uso terapêutico , Replicação Viral , Biomarcadores , Progressão da Doença , Hepatite B/diagnóstico , Hepatite B/tratamento farmacológico
8.
Viruses ; 14(6)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746730

RESUMO

Na+/taurocholate cotransporting polypeptide (NTCP, gene symbol SLC10A1) is a hepatic bile acid uptake carrier participating in the enterohepatic circulation of bile acids. Apart from its transporter function, NTCP acts as the high-affinity liver-specific receptor for the hepatitis B virus (HBV), which attaches via its preS1-peptide domain of the large surface protein to NTCP, subsequently leading to endocytosis of the virus/NTCP-receptor complex. Although the process of NTCP-dependent HBV infection of hepatocytes has received much attention over the last decade, the precise molecular sites of the virus/NTCP interaction have not been fully identified. Inspection of the primary protein sequence of human NTCP revealed 139YIYSRGIY146 as a highly conserved tyrosine-rich motif. To study the role of Y139, Y141 and Y146 amino acids in NTCP biology, the aforementioned residues were substituted with alanine, phenylalanine or glutamate (mimicking phosphorylation) using site-directed mutagenesis. Similar to wt NTCP, the Y139A, Y141A, Y146A, Y141F, Y146F, and Y146E mutants were expressed at the plasma membrane of HEK293 cells and exhibited intact bile acid transport function. Y146A, Y146E, and Y146F demonstrated transport kinetics comparable to wild-type NTCP with Km values of 57.3-112.4 µM and Vmax values of 6683-7579 pmol/mg protein/min. Only Y141E was transport deficient, most likely due to an intracellular accumulation of the mutant protein. Most importantly, Y146A and Y146E mutation completely abrogated binding of the viral preS1-peptide to NTCP, while the Y146F mutant of NTCP showed some residual binding competence for preS1. Consequently, the NTCP mutants Y146A and Y146E, when expressed in HepG2 hepatoma cells, showed complete loss of susceptibility for in vitro HBV infection. In conclusion, tyrosine 146, and to some extent tyrosine 141, both belonging to the tyrosine-rich motif 139YIYSRGIY146 of human NTCP, are newly identified amino acid residues that play an essential role in the interaction of HBV with its receptor NTCP and, thus, in the process of virus entry into hepatocytes.


Assuntos
Vírus da Hepatite B , Hepatite B , Ácidos e Sais Biliares/metabolismo , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/fisiologia , Hepatócitos , Humanos , Receptores Virais/metabolismo , Ácido Taurocólico , Tirosina/metabolismo , Internalização do Vírus
9.
Viruses ; 14(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35458456

RESUMO

The Na+/taurocholate co-transporting polypeptide (NTCP, gene symbol SLC10A1) is both a physiological bile acid transporter and the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Virus entry via endocytosis of the virus/NTCP complex involves co-factors, but this process is not fully understood. As part of the innate immunity, interferon-induced transmembrane proteins (IFITM) 1-3 have been characterized as virus entry-restricting factors for many viruses. The present study identified IFITM3 as a novel protein-protein interaction (PPI) partner of NTCP based on membrane yeast-two hybrid and co-immunoprecipitation experiments. Surprisingly, IFITM3 knockdown significantly reduced in vitro HBV infection rates of NTCP-expressing HuH7 cells and primary human hepatocytes (PHHs). In addition, HuH7-NTCP cells showed significantly lower HDV infection rates, whereas infection with influenza A virus was increased. HBV-derived myr-preS1 peptide binding to HuH7-NTCP cells was intact even under IFITM3 knockdown, suggesting that IFITM3-mediated HBV/HDV infection enhancement occurs in a step subsequent to the viral attachment to NTCP. In conclusion, IFITM3 was identified as a novel NTCP co-factor that significantly affects in vitro infection with HBV and HDV in NTCP-expressing hepatoma cells and PHHs. While there is clear evidence for a direct PPI between IFITM3 and NTCP, the specific mechanism by which this PPI facilitates the infection process remains to be identified in future studies.


Assuntos
Hepatite B , Simportadores , Células Hep G2 , Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/genética , Hepatócitos , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Proteínas de Ligação a RNA/metabolismo , Simportadores/genética , Simportadores/metabolismo , Internalização do Vírus
10.
Artigo em Alemão | MEDLINE | ID: mdl-35015105

RESUMO

The National Reference Center (NRC) for hepatitis B viruses (HBV) and hepatitis D viruses (HDV) has been located at the Institute of Medical Virology of the Justus Liebig University (JLU) in Giessen, Germany, since its establishment in 2011. This paper describes the NRC's areas of activity and related experience.The NRC offers comprehensive consulting services on all diagnostic and clinical aspects of acute and chronic HBV and HDV infections for the Public Health Service (ÖGD), diagnostic laboratories, clinics, research institutes, and physicians in private practice. Uncertain diagnostic findings can be analyzed and interpreted and epidemiological correlations clarified with the HBV/HDV special diagnostics established at the NRC using state-of-the-art molecular, biochemical, and genetic laboratory tools. The NRC has access to a strain collection of many well-characterized and cloned HBV/HDV isolates, allowing comparative analysis and evaluation of antiviral resistance mutations and immune escape variants. Together with its national and international partner institutions, the NRC initiates and supervises, among other things, interlaboratory studies for the diagnosis of HBV resistance and immune escape for the establishment and validation of international World Health Organization (WHO) standards and for the improvement of quantitative HDV genome determination. The NRC actively participates in current recommendations and guidelines on HBV and HDV and the recommendations of medical societies. It also highlights current HBV/HDV-relevant aspects with contributions in the form of national and international lectures as well as original articles and comments in national and international journals.


Assuntos
Hepatite B , Hepatite D , Alemanha , Hepatite B/diagnóstico , Hepatite B/epidemiologia , Vírus da Hepatite B , Hepatite D/diagnóstico , Hepatite D/epidemiologia , Vírus Delta da Hepatite/genética , Humanos
11.
Cell Mol Gastroenterol Hepatol ; 13(4): 1041-1055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34954190

RESUMO

BACKGROUND & AIMS: The endocannabinoid system is involved in the modulation of inflammatory, fibrotic, metabolic, and carcinogenesis-associated signaling pathways via cannabinoid receptor (CB)1 and CB2. We hypothesized that the pharmacologic antagonization of CB1 receptor improves cholestasis in Abcb4-/- mice. METHODS: After weaning, male Abcb4-/- mice were treated orally with rimonabant (a specific antagonist of CB1) or ACEA (an agonist of CB1) until up to 16 weeks of age. Liver tissue and serum were isolated and examined by means of serum analysis, quantitative real time polymerase chain reaction, Western blot, immunohistochemistry, and enzyme function. Untreated Abcb4-/- and Bagg Albino Mouse/c wild-type mice served as controls. RESULTS: Cholestasis-induced symptoms such as liver damage, bile duct proliferation, and enhanced circulating bile acids were improved by CB1 antagonization. Rimonabant treatment also improved Phosphoenolpyruvat-Carboxykinase expression and reduced inflammation and the acute-phase response. The carcinogenesis-associated cellular-Jun N-terminal kinase/cellular-JUN and signal transducer and activator of transcription 3 signaling pathways activated in Abcb4-/- mice were reduced to wild-type level by CB1 antagonization. CONCLUSIONS: We showed a protective effect of oral CB1 antagonization in chronic cholestasis using the established Abcb4-/- model. Our results suggest that pharmacologic antagonization of the CB1 receptor could have a therapeutic benefit in cholestasis-associated metabolic changes, liver damage, inflammation, and carcinogenesis.


Assuntos
Colestase , Receptor CB1 de Canabinoide , Animais , Carcinogênese , Colestase/tratamento farmacológico , Inflamação , Masculino , Camundongos , Rimonabanto/farmacologia
12.
Transbound Emerg Dis ; 69(2): 195-203, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34606685

RESUMO

In humans, co-infection of hepatitis B and C viruses (HBV, HCV) is common and aggravates disease outcome. Infection-mediated disease aggravation is poorly understood, partly due to lack of suitable animal models. Carnivores are understudied for hepatitis virus homologues. We investigated Mexican carnivores (ringtails, Bassariscus astutus) for HBV and HCV homologues. Three out of eight animals were infected with a divergent HBV termed ringtail HBV (RtHBV) at high viral loads of 5 × 109 -1.4 × 1010 copies/ml serum. Two of the RtHBV-infected animals were co-infected with a divergent hepacivirus termed ringtail hepacivirus (RtHV) at 4 × 106 -7.5 × 107 copies/ml in strain-specific qRT-PCR assays. Immunofluorescence assays relying on HBV core and RtHV NS3/4a proteins indicated that none of the animals had detectable hepadnavirus core-specific antibodies, whereas one RtHV-infected animal had concomitant RtHV-specific antibodies at 1:800 end-point titre. RtHBV and RtHV complete genomes showed typical HBV and HCV structure and length. All RtHBV genomes were identical, whereas RtHV genomes showed four amino acid substitutions located predominantly in the E1/E2-encoding genomic regions. Both RtHBV (>28% genomic nucleotide sequence distance) and RtHV (>30% partial NS3/NS5B amino acid sequence distance) formed new species within their virus families. Evolutionary analyses showed that RtHBV grouped with HBV homologues from different laurasiatherian hosts (carnivores, bats, and ungulates), whereas RtHV grouped predominantly with rodent-borne viruses. Ancestral state reconstructions showed that RtHV, but not RtHBV, likely emerged via a non-recent host switch involving rodent-borne hepacivirus ancestors. Conserved hepatitis virus infection patterns in naturally infected ringtails indicate that carnivores may be promising animal models to understand HBV/HCV co-infection.


Assuntos
Coinfecção , Hepatite B , Animais , Coinfecção/veterinária , Hepacivirus/genética , Hepatite B/complicações , Hepatite B/epidemiologia , Hepatite B/veterinária , Vírus da Hepatite B/genética , Carga Viral/veterinária
13.
Methods ; 203: 431-446, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839288

RESUMO

Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas3, Cas9, Cas12, Cas13, Cas14 etc.) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, lateral flow assay detection and other. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, CARMEN or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing COVID-19) and outbreaks of zoonotic viruses (African Swine Fever Virus etc.) urgently need the developing and distribution of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.


Assuntos
Vírus da Febre Suína Africana , COVID-19 , Doenças Transmissíveis , Animais , COVID-19/diagnóstico , COVID-19/epidemiologia , Sistemas CRISPR-Cas/genética , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Suínos
14.
Emerg Microbes Infect ; 10(1): 2264-2275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34767497

RESUMO

Hepatitis B virus (HBV) is a DNA virus with a complex life cycle that includes a reverse transcription step. HBV is poorly sensed by the immune system and frequently establishes persistent infection that can cause chronic infection, the leading cause of liver cancer and cirrhosis worldwide. Recent mounting evidence has indicated the growing importance of RNA methylation (m6A modification) in viral replication, immune escape, and carcinogenesis. The value of m6A RNA modification for the prediction and clinical management of chronic HBV infection remains to be assessed. However, a number of studies indicate the important role of m6A-marked transcripts and factors of m6A machinery in managing HBV-related pathologies. In this review, we discuss the fundamental and potential clinical impact of m6A modifications on HBV infection and pathogenesis, as well as highlight the important molecular techniques and tools that can be used for studying RNA m6A methylome.


Assuntos
Vírus da Hepatite B/metabolismo , Hepatite B/virologia , Animais , Hepatite B/fisiopatologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Hepáticas/fisiopatologia , Neoplasias Hepáticas/virologia , Metilação
15.
JHEP Rep ; 3(6): 100356, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712932

RESUMO

BACKGROUND & AIMS: Currently available HDV PCR assays are characterized by considerable run-to-run and inter-laboratory variability. Hence, we established a quantitative reverse transcription real-time PCR (RT-qPCR) assay on the open channel of a fully automated PCR platform (cobas6800, Roche) offering improved consistency and reliability. METHODS: A primer/probe-set targeting a highly conserved region upstream of the HDV antigen was adapted for use on the cobas6800. The lower limit of detection (LLOD) was determined using a dilution panel of the HDV WHO standard (n = 21/dilution). Linearity and inclusivity were tested by preparing 10-fold dilution series of cell culture-derived virus (genotype [GT]1-8; n = 5/dilution). Patient samples containing a variety of bloodborne viral pathogens were tested to confirm exclusivity (n = 60). RESULTS: The LLOD of the HDV utility-channel (HDV_UTC) assay was determined as 3.86 IU/ml (95% CI 2.95-5.05 IU/ml) with a linear range from 10-10ˆ8 IU/ml (GT1). Linear relationships were observed for all HDV GTs with slopes ranging from -3.481 to -4.134 cycles/log and R2 from 0.918 to 0.994. Inter-run and intra-run variability were 0.3 and 0.6 Ct (3xLLOD), respectively. No false-positive results were observed. To evaluate clinical performance, 110 serum samples of anti-HDV-Ab+ patients were analyzed using the HDV_UTC and CE-IVD RoboGene assays. 58/110 and 49/110 samples were concordant positive or negative, respectively (overall agreement 97.3%). Quantitative comparison demonstrated a strong correlation (R2 0.8733; 95% CI 0.8914-0.9609; p value <0.0001). CONCLUSION: The use of highly automated, sample-to-result solutions for molecular diagnostics holds many inherent benefits over manual workflows, including improved reliability, reproducibility and dynamic scaling of testing capacity. The assay we established showed excellent analytical and clinical performance, with inclusivity for all HDV GTs and a limit of quantification of 10 IU/ml, making it a sensitive new tool for HDV screening and viral load monitoring. LAY SUMMARY: The hepatitis delta virus (HDV) causes a severe form of inflammation in the liver. We developed a tool for molecular diagnostics, a polymerase chain reaction HDV assay that showed great performance. It can be used to improve diagnosis of HDV, as well as for monitoring treatment responses. The assay allows for quantification of the virus in the tested samples and is performed on a fully automated platform (cobas6800), which provides various benefits including less hands-on time and excellent comparability of test results.

16.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452354

RESUMO

The hepatic bile acid transporter Na+/taurocholate co-transporting polypeptide (NTCP) was identified in 2012 as the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Since then, this carrier has emerged as promising drug target for HBV/HDV virus entry inhibitors, but the synthetic peptide Hepcludex® of high molecular weight is the only approved HDV entry inhibitor so far. The present study aimed to identify small molecules as novel NTCP inhibitors with anti-viral activity. A ligand-based bioinformatic approach was used to generate and validate appropriate pharmacophore and QSAR (quantitative structure-activity relationship) models. Half-maximal inhibitory concentrations (IC50) for binding inhibition of the HBV/HDV-derived preS1 peptide (as surrogate parameter for virus binding to NTCP) were determined in NTCP-expressing HEK293 cells for 150 compounds of different chemical classes. IC50 values ranged from 2 µM up to >1000 µM. The generated pharmacophore and QSAR models were used for virtual screening of drug-like chemicals from the ZINC15 database (~11 million compounds). The 20 best-performing compounds were then experimentally tested for preS1-peptide binding inhibition in NTCP-HEK293 cells. Among them, four compounds were active and revealed experimental IC50 values for preS1-peptide binding inhibition of 9, 19, 20, and 35 µM, which were comparable to the QSAR-based predictions. All these compounds also significantly inhibited in vitro HDV infection of NTCP-HepG2 cells, without showing any cytotoxicity. The best-performing compound in all assays was ZINC000253533654. In conclusion, the present study demonstrates that virtual compound screening based on NTCP-specific pharmacophore and QSAR models can predict novel active hit compounds for the development of HBV/HDV entry inhibitors.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus Delta da Hepatite/efeitos dos fármacos , Interface Usuário-Computador , Internalização do Vírus/efeitos dos fármacos , Descoberta de Drogas , Células HEK293 , Células Hep G2 , Hepatócitos/virologia , Humanos , Concentração Inibidora 50 , Transportadores de Ânions Orgânicos Dependentes de Sódio , Relação Quantitativa Estrutura-Atividade , Ligação Viral/efeitos dos fármacos
17.
Viruses ; 13(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34372578

RESUMO

Viral infections cause a variety of acute and chronic human diseases, sometimes resulting in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics. Understanding and exploiting virus-host interactions is instrumental for identifying host factors involved in viral replication, developing effective antiviral agents, and mitigating the severity of virus-borne infectious diseases. The diversity of CRISPR systems and CRISPR-based tools enables the specific modulation of innate immune responses and has contributed impressively to the fields of virology and immunology in a very short time. In this review, we describe the most recent advances in the use of CRISPR systems for basic and translational studies of virus-host interactions.


Assuntos
Antivirais/imunologia , Antivirais/farmacologia , Sistemas CRISPR-Cas , Viroses/imunologia , Animais , Exorribonucleases/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferons/genética , Interferons/imunologia , Edição de RNA , Transcriptoma , Viroses/virologia , Internalização do Vírus , Replicação Viral/efeitos dos fármacos
18.
Front Mol Biosci ; 8: 699443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239896

RESUMO

Homodimerization is essential for plasma membrane sorting of the liver bile acid transporter NTCP and its function as Hepatitis B/D Virus (HBV/HDV) receptor. However, the protein domains involved in NTCP dimerization are unknown. NTCP bears two potential GXXXG/A dimerization motifs in its transmembrane domains (TMDs) 2 and 7. The present study aimed to analyze the role of these GXXXG/A motifs for the sorting, function, and dimerization of NTCP. The NTCP mutants G60LXXXA64L (TMD2), G233LXXXG237L (TMD7) and a double mutant were generated and analyzed for their interaction with wild-type NTCP using a membrane-based yeast-two hybrid system (MYTH) and co-immunoprecipitation (co-IP). In the MYTH system, the TMD2 and TMD7 mutants showed significantly lower interaction with the wild-type NTCP. In transfected HEK293 cells, membrane expression and bile acid transport activity were slightly reduced for the TMD2 mutant but were completely abolished for the TMD7 and the TMD2/7 mutants, while co-IP experiments still showed intact protein-protein interactions. Susceptibility for in vitro HBV infection in transfected HepG2 cells was reduced to 50% for the TMD2 mutant, while the TMD7 mutant was not susceptible for HBV infection at all. We conclude that the GXXXG/A motifs in TMD2 and even more pronounced in TMD7 are important for proper folding and sorting of NTCP, and so indirectly affect glycosylation, homodimerization, and bile acid transport of NTCP, as well as its HBV/HDV receptor function.

20.
Vaccines (Basel) ; 9(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915943

RESUMO

Background and aims: Peripartum transmission of hepatitis B virus (HBV) from an infected mother to the child can be prevented in most but not all cases by immediate vaccination of the newborn. The aim of this study was to compare the efficacy of two licensed hepatitis B vaccines, Engerix-B versus Sci-B-Vac, in preventing peripartum HBV transmission. Methods: A prospective multicenter randomized controlled study in 4 delivery centers was performed from 2009 to 2014. HBsAg positive pregnant women and their newborns were recruited at the delivery rooms. All newborns received Hepatitis B Immune Globulin within 10 h after birth, as well as active HBV vaccination at 0, 1 and 6 months of age. Maternal assessment at delivery included transaminases, blood count, international normalized ratio and viral status. Infants were tested for HBsAg, anti-HBc and anti-HBs at 12 months of age. Results: In the intention to treat (ITT), 171 infant and mother pairs fulfilled the study enrollment criteria and completed follow up, 82 received Engerix-B and 89 Sci-B-Vac. Maternal parameters and viral status were similar in both groups. At 12 months of age, the Sci-B-Vac group had lower HBsAg carriage rates (1/89, 1.1%) than the Engerix-B group (5/82, 6.1%) with borderline significance (risk difference of -0.05, 95% CI -0.11-0.007, t-test = 0.05), and borderline significance lower vaccine failure rates with anti-HBs < 10 mIU/mL in the Sci-B-Vac (2/89, 2.2%) than in the Engerix-B (8/82, 9.8%, p = 0.05). Higher seroprotection rates were found in the Sci-B-Vac group with all anti-HBs titer stratifications of >10 mIU/mL (p = 0.05), >100 mIU/mL (p = 0.05) and >1000 mIU/mL (p = 0.01). Active/passive vaccination was effective in 10/13 cases with maternal HBV DNA levels > 7 log10 IU/mL up to 9.5 log10 IU/mL, but failed in 3 cases for unknown reasons. Conclusion: Sci-B-Vac was superior to Engerix-B in preventing peripartum HBV transmission in neonates from HBsAg+ mothers and induces significantly higher anti-HBs levels. NIH registration number: NCT01133184.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...